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Abstract
We decorate the square lattice with two species of polygons under the constraint
that every lattice edge is covered by only one polygon and every vertex is visited
by both types of polygons. We end up with a 24-vertex model which is known
in the literature as the fully packed double loop model (FPL2). In the particular
case in which the fugacities of the polygons are the same, the model admits
an exact solution. The solution is obtained using coordinate Bethe ansatz and
provides a closed expression for the free energy. In particular, we find the
free energy of the four-colouring model and the double Hamiltonian walk and
recover the known entropy of the Ice model. When both fugacities are set equal
to 2 the model undergoes an infinite-order phase transition.

PACS numbers: 02.30.Ik, 05.50.+q

1. Introduction

Loop models appear in a variety of contexts: as diagrammatic expansion of the Potts and
the O(n) models [30], and as models to describe polymers in several phases. The conformal
properties were investigated using the Coulomb gas mapping [11]. An exact expression for
the free energy, in the thermodynamic limit, was found by using the coordinate Bethe ansatz
method and solving linear integral equations [16, 17]. Since then, new loop models have been
studied on the square lattice [1, 22], decorated lattices [5, 34], a random lattice [15] and in
three dimensions [35]. The resolution techniques have been improved both on the numerical
side, introducing the connectivity basis [1, 25, 26] and on the analytical front adding the seam
[19, 20], making use of the algebraic Bethe ansatz [27], mapping to an interface model [1, 7]
and exploiting conformal field theory [31]. Some early examples of integrable loop models
are found in [38, 39].

Here we are interested in the fully packed double loop model (FPL2) on the square lattice.
It is defined by filling the square lattice with loops in two colours, drawn along the lattice

0305-4470/04/093085+16$30.00 © 2004 IOP Publishing Ltd Printed in the UK 3085

http://stacks.iop.org/ja/37/3085


3086 D Dei Cont and B Nienhuis

1/ωη ω/η ω η η/ω 1 1

Figure 1. The six basic types of vertices of the 24-vertex model and the corresponding weights.
When ω = η the model admits an exact solution.

edges in such a way that every bond is covered by one loop and every site is visited by both
types of loops. It was introduced for the first time in [6] as an alternative representation of the
four-colouring model on the square lattice. It is a natural generalization of the fully packed
one loop model on the honeycomb lattice [8, 21, 24, 27], which is the loop representation of
the three-colouring model on the hexagonal lattice [14].

Jacobsen and Kondev mapped the FPL2 model onto a height model and postulate that
the long wavelength behaviour is correctly described by a Liouville field theory [10]. This
provides a geometrical view of conformal invariance in two-dimensional critical phenomena
and a method to access the critical properties of loop models exactly. In particular, they
succeed in calculating the central charge and the critical exponents [1, 9].

The FPL2 model exhibits a rich phase diagram and provides a representation for previously
studied models: Ice model [13], four-colouring model [6], dimer loop model [32], double
Hamiltonian walk [10] and compact polymers [23]. A generalization of the FPL2 model,
which offers a unifying picture of the compact, dense and dilute phases of polymers, was
proposed in [4] by relaxing the full packing constraint. Another possible generalization
corresponds to the Flory model of polymer melting [3]. Recently the FPL2 model has been
coupled to two-dimensional quantum gravity in order to study meanders [33].

Here we find an exact expression for the free energy, in the thermodynamic limit,
when the loop fugacities are the same. The solution relies on coordinate Bethe ansatz.
Unfortunately the compact polymer does not belong to the solvable line. The configurational
entropy for the double Hamiltonian walk [1, 10] and the four-colouring model [6] is calculated.
We also confirm a conjecture on the average length of loops [2].

The present work is organized as follows. In section 2 we map the FPL2 model into a
24-vertex model on the square lattice. The transfer matrix is set up in section 3 and diagonalized
by means of coordinate Bethe ansatz (BA) in section 4. The free energy, in the thermodynamic
limit, is calculated in section 5.

2. The model

We study a 24-vertex model on the square lattice. Every edge is decorated with either of two
types of arrows, black or grey ones. The admitted configurations of arrows do not contain
sources and sinks, so that for both colours there is one arrow going in and one going out
of each vertex. The 24 possible vertices may be divided into six basic types depicted in
figure 1, the others being related by π/2 rotations. We can interpret each vertex as a couple
of lines turning clockwise or anticlockwise. In this way the vertex model is mapped into an
oriented loop model. We are interested in the partition function of the unoriented loop model
defined as,

Z =
∑

n
Nb

b n
Ng

g (1)
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where Nb and Ng are the respective numbers of black and grey loops. We assign the fugacity
nb for black loops and ng for grey loops. The sum is over all the allowed loop configurations.
The fugacities of the loops are related to the weights of the vertex model by

ω ≡ exp(iπeb/4) η ≡ exp(iπeg/4) nb = 2 cos πeb ng = 2 cos πeg. (2)

This is the two-flavour fully packed loop model (FPL2) on the square lattice investigated by
Jacobsen and Kondev [1]. We will see that when the vertex weights are the same ω = η, the
partition function of FPL2 (1) can be computed exactly, in the thermodynamic limit, making a
coordinate Bethe ansatz. For particular values of the fugacity we recover the partition function
of models studied previously. In particular (nb, ng) = (2, 2) corresponds to the four-colouring
model on the square lattice [6]. For (nb, ng) = (1, 1) we get the Ice model solved by Lieb [13].
The single Hamiltonian walk is obtained for (nb, ng) = (0, 1) [1]. Finally (nb, ng) = (0, 0)

is the double Hamiltonian walk for which the entropy has been correctly conjectured in [1],
as we will show.

3. The transfer matrix

Here we set up a transfer matrix for the model following [13, 14]. Consider a square lattice
on a cylinder, made up by LM vertices and connect the vertices by vertical and horizontal
bonds. Starting from the bottom we have a circular row of L vertical bonds followed by a row
of L horizontal bonds and so on alternately. Denote by |�〉 the possible configuration of a
row of L vertical bonds, that is to say a precise assignment of arrows on each of the vertical
bonds. There are 4L possible choices. Let |�〉 and |� ′〉 be the states of two consecutive rows
of vertical bonds. The intervening row of horizontal edges is decorated so that the L resulting
vertices are of the types shown in figure 1. To each allowed configuration of vertices we assign
a weight given by the product of the weight of each single vertex. Then we sum over all the
possible configurations of horizontal bonds compatible with the vertical bonds and obtain the
total weight denoted by 〈� ′|T|�〉. In this way we build up the transfer matrix T for the model.
The physics of the model is encoded in the eigenvalues and the eigenvectors of the transfer
matrix. If periodic boundary conditions are imposed in the vertical direction, the partition
function is simply the trace of the transfer matrix raised to the power M:

Z = Tr TM. (3)

In the thermodynamic limit the free energy f∞ follows from the largest eigenvalue �(L) of
the 4L-square matrix T by

f∞ = lim
L→∞

1

L
log �(L). (4)

If we interpret the vertical axis of the cylinder as time (running downward, for convenience)
and the horizontal extent as space we end up with the time evolution of a one-dimensional
system.

In the following we are going to study the possible evolution of a generic state. Impose
periodic boundary conditions on the horizontal direction. It is convenient to start from the
state which consists of only grey arrows pointing up (pseudo-vacuum). This can match only
with a successive row of grey arrows up. There are two possibilities for the intervening row
of horizontal bonds: they must be black arrows, either running all to the right or all to the
left. The total weight is 2. The next step is to replace some of the grey arrows up by black
arrows pointing up. We call a black arrow up an ordinary particle. In this case the upper
row can evolve in two different lower rows as illustrated by figure 2: all the particles move
either one step to the right (figure 2(a)) or one step to the left (figure 2(b)). The product of the
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Figure 2. Four ordinary particles (black arrows up) and one special particle (black arrow down).
Dashed line indicates the position of the seam. The special particle, in the upper row, is the second
one from the left (j = 2). The possible evolutions of the upper row are: (a) shift to the right,
(b) shift to the left, (c) appearance of the black half-loops. In the lower row the special particle is
the fourth one (m + 1 = 4).

(a ) (b ) 

x- 1 x+1

j k

x x+1

j k

Figure 3. (a) The two particles are at a distance of two, no black loop can be inserted in between,
(b) Particles on adjacent sites force a grey half-loop to be inserted.

weight of each single vertex equals 1, because vertices with reciprocal weight come in pairs,
so that the total weight of the transition is set to 1. More complex patterns arise allowing
for black arrows pointing down. We refer to a black arrow down as a special particle. Now,
besides the global shift, there are other possible evolutions of which an example is depicted in
figure 2(c). The special particle can be connected via a half-loop to the left or right
neighbouring ordinary particle. Then in order to fulfil the boundary constraint a black half-loop
has to be inserted in the lower row. This half-loop can turn either clockwise or anticlockwise
and must be located between any two particles other than the two already connected via the
upper row. Thus we end up with one half-loop in the upper row and one half-loop in the lower
row. Particles shift one step to the right or to the left according to their position relative to the
half-loops. The total weight is completely determined by the orientation of the two half-loops.
A clockwise half-loop contributes ω2 and an anticlockwise one ω−2. To complete the list of
allowed configurations we have to examine the states containing grey arrows down. We will
interpret the grey arrow down as a bound state between two black arrows (see figures 3(b)
and 4). We leave the details to the next section.

A fundamental ingredient, in seeking for an exact solution, is the existence of conserved
quantities. Besides the conservation of black and grey flux, there is an additional conservation
law, which is less evident. We saw that at every application of the transfer matrix, both
ordinary and special particles, shift one step. Therefore the lattice can be divided into two
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Figure 4. Four ordinary particles (black arrows up) and one bound state (grey arrow down). The
bound state is the second particle from the left (m = 2). The possible evolutions of the upper row
are: (a) the bound state goes straight and the ordinary particles shift to the right, (b) the bound
state goes straight and the ordinary particles shift to the left, (c) the bound state forms a small grey
half-loop and evolves splitting into two black arrows (the j th and kth particles). Periodic boundary
conditions force a black-half loop to be inserted in the lower row.

sublattices such that the number of particles on each sublattice remains constant from row
to row. As a result the transfer matrix splits in a series of diagonal blocks relating states in
the same sector. Each sector is completely fixed by specifying the number of odd, even and
special particles. We are going to diagonalize this matrix making an appropriate ansatz on the
structure of the eigenvectors.

Before concluding this section we make some remarks concerning the relation between
the loop and the 24-vertex model [18]. We assign the weights exp(±iπeb,g) to each oriented
loop. The orientation fixes the sign and the colour selects the phase eb or eg . The partition
sum of the oriented FPL2 model may be cast in the form

Z =
∑

[exp(iπeb) + exp(−iπeb)]
Nb [exp(iπeg) + exp(−iπeg)]

Ng (5)

where the sum runs over all the allowed unoriented loop configurations. Relating the
unoriented loop fugacities to the oriented loop phases by nb,g = 2 cos πeb,g , we recover
the partition function of the unoriented loop model (1). The advantage of splitting the loop
fugacity among the two possible orientations, is that in this way the loop fugacity can be
distributed along all the vertices visited by the loop. This is achieved by assigning the weight
exp(±iπeb,g/4) to every vertex visited by the oriented loop, with + sign for a clockwise turn
and − for the anticlockwise one. Since for every oriented loop, on the square lattice, the
difference between clockwise and anticlockwise turns is ±4, multiplying over all the local
vertex weights we recover the correct global loop weight. This should clarify relations (2)
and the choices made for the vertex weights in figure 1. It is important to note that the
previous argument does not work for a loop winding round the cylinder because in that case
the difference between clockwise and anticlockwise turns is zero. In order to give the correct
weight to non-contractable loops a seam [19–21] is placed between two generic vertices. This
is well depicted in figure 2. The total weight of a generic transition will factorize in the weight
of each single vertex and an extra factor which accounts for the seam. The additional factor
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is set equal to a (a−1) when the seam cuts a right (left) pointing arrow. For convenience we
introduce a phase α setting a = exp(iπα). In terms of the phases the partition function of the
unoriented FPL2 model on the cylinder reads

Z =
∑

(2 cos πeb)
Nb(2 cos πeg)

Ng (2 cos πα)Na (6)

where Na is the total (black+grey) number of uncontractable loops. Note that, in order to
simplify the calculation, we do not distinguish between grey and black uncontractable loops.

4. The Bethe ansatz

Since the grey arrow down serves as bound state between two black arrows, we restrict, for the
moment, to the sector containing only ordinary and special particles. Denote the generic state
of a row of L vertical bonds by |x, r〉. The vector x = (x1, . . . , xN) gives the position of all
the N particles while the vector r = (r1, . . . , rm) specifies that those at position xr1 , . . . , xrm

are special ones. The eigenvalue equation for the transfer matrix reads:

T
∑
|x,r〉

�(x, r)|x, r〉 = �
∑
|x,r〉

�(x, r)|x, r〉 (7)

where the eigenstate of eigenvalue � is a linear combination, with coefficients �(x, r), of the
base |x, r〉. In the coefficients the eigenvalue equation assumes the form∑

|x′,r′〉
〈x, r|T|x′, r′〉�(x′, r′) = ��(x, r). (8)

Here we examine the sector with N particles in total, (N − 1 ordinary + 1 special), located at
position x1, . . . , xN , where xi+1 − xi > 2, and suppose that the j th particle is a special one.
Moreover, we assume that the seam is placed between two ordinary particles. In order to solve
the eigenvalue problem we make the following ansatz on the form of the wavefunction:

�j(x1, . . . , xN) ≡
∑

p

Ap1...pN
ψj (p)

N∏
i=1

zxi

pi
(9)

where the sum runs over all permutations p = (p1, . . . , pN) of the numbers 1, . . . , N . The
goal is to choose Ap, ψj (p) and the complex numbers zp1 , . . . , zpN

so that (8) is satisfied. At
this stage the structure of the coefficient ψj(p), the behaviour of Ap1...pN

under the exchange
of two consecutive indices, and the dependence of the eigenvalue � on zp1 , . . . , zpN

, are still
unknown. In the following we are going to determine it.

Inserting ansatz (9) into the eigenvalue equation (8), we see that a sufficient condition for
the validity of (8) is that the coefficient ψj(p) obeys, for any permutation p, the following
evolution equation:

�ψj = az1:Nψj−1 +
1

az1:N
ψj+1 + ω2

j+N−2∑
m=j

(ω−2αmψm + ω2βm+1ψm+1)
zj :m

zm+1:N+j−1

+ ω−2
j+N−1∑
m=j+1

(ω−2αmψm + ω2βm+1ψm+1)
zj+1:m

zm+1:N+j

. (10)

Since we will be concerned mainly with one permutation p, we introduce the more compact
notation zi ≡ zpi

and zi:k ≡ ∏k
j=i zpj

, together with the cyclic condition zj = zj+N . Let us
examine in detail all the terms. The first term on the rhs of (10) describes the process in which
all the particles shift one step to the right (figure 2(a)). Note that the special particle is the
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j th one in the upper row and the (j − 1)th in the lower row. The weight of the process is a
because the arrow crosses the seam in the right direction. The product z1:N accounts for the
global shift to the right. The second term describes the left translation (figure 2(b)). Let us
clarify the two sums. Start with the first one (figure 2(c)). The special particle in the upper
row is connected via a clockwise half-loop to the left neighbouring ordinary particle. This is
taken into account by the coefficient ω2 in front of the sum. The half-loop in the lower row
must be inserted between any two particles except the ones already connected by a half-loop
in the upper row. Therefore the sum runs from m = j to m = j + N − 2. Moreover the
particles distributed between the j th and mth particles undergo a shift to the right while those
positioned between m + 1 and j + N − 1 move one step to the left. These translations are
taken into account by the products zj :m/zm+1:N+j−1. Since the half-loop in the lower row
may turn clockwise or anticlockwise, each term in the sum splits in two parts: ω−2ψm for
the anticlockwise half-loop and ω2ψm+1 for the clockwise one. The same argument applies
to the second sum. The coefficients αm and βm+1 ensure that loops which wrap around the
cylinder pick up the correct weight. They are set equal to a (a−1) when an arrow, of any of
the two colours, in the intervening row of horizontal edges, crosses the seam in the right (left)
direction. Their values depend on the relative position of the special particle in the upper row,
the seam, and the half-loop in the lower row. Following figure 2(c) we see that when the lower
half-loop is placed between the special particle j and the seam, the intervening arrow, cut by
the seam, points to the left, so that αm = βm+1 = a−1. When it is positioned on the right
of the seam αm = βm+1 = a. In the special case in which the seam cuts the lower half-loop
αm = a−1 and βm+1 = a.

Our aim is to compute the coefficient ψj and the eigenvalue �. Rearranging the terms,
equation (10) may be expressed in a more compact form as

�ψj = −az1:Nω4ψj − 1

az1:Nω4
ψj +

(
z−1
j ω−2 + zjω

2
)
Qj (11)

where the quantity Qj is defined as

Qj ≡
j+N−1∑
m=j

(ω−2αmψm + ω2βm+1ψm+1)
zj+1:m

zm+1:N+j−1
. (12)

The term Qj generates all the oriented black half-loops in the lower row, which can be
accommodated between two consecutive particles. An alternative definition of Qj comes
from equation (11):

Qj = � + az1:Nω4 + a−1z−1
1:Nω−4

z−1
j ω−2 + zjω2

ψj . (13)

From the original definition of Qj (12) it follows that

zj+1Qj+1 − z−1
j Qj = (ω−2ψj + ω2ψj+1)

(
az1:N − 1

az1:N

)
. (14)

Substituting in the lhs of (14) the alternative expression for Qj given by (13):

(
� + az1:Nω4 + a−1z−1

1:Nω−4
) (

z2
j+1

ω−2 + z2
j+1ω

2
ψj+1 − 1

ω−2 + z2
jω

2
ψj

)

= (ω−2ψj + ω2ψj+1)

(
az1:N − 1

az1:N

)
. (15)
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Equation (15) can be read as a recursive relation for ψj . It simplifies defining the eigenvalue
via a new variable µ:

� ≡ −
[
az1:N(ω4 − µ) +

1

az1:N
(ω−4 + µ)

]
. (16)

Replacing the eigenvalue � in equation (15) by definition (16) and dropping the overall factor
which contains az1:N , the recursive relation for ψj reads

(µ − ω4)z2
j+1 − 1

ω−2 + z2
j+1ω

2
ψj+1 = µ + z2

j + ω−4

ω−2 + z2
jω

2
ψj . (17)

Note that relation (17) does not involve the parameter a. To see how the parameter a enters in
the wavefunction we have to inspect the case in which there are no ordinary particles between
the seam and the special particle. Note that in this special case the seam may cut the upper
black half-loop. We skip the calculation and give the final result for the structure of the
coefficient ψm:

ψm = s
ω−2 + ω2z2

m

(µ − ω4)z2
m − 1

m−1∏
k=1

µ + ω−4 + z2
k

(µ − ω4)z2
k − 1

(18)

where s = 1 if the special particle is located left of the seam, and s = a−2 if it is positioned
on the right side.

The formalism developed up to now, works for sparsely distributed particles. When the
condition xi+1 − xi > 2 does not hold, several restrictions on the amplitude Ap are necessary.
Suppose that two generic particles are located at positions x − 1 and x + 1 (see figure 3(a)),
then a half-loop of black arrows cannot be inserted between them in the lower row. Thus, this
event must be omitted from the generic list of possibilities, in which both the particles have
come from afar. We demand the weight of the corresponding term, automatically generated by
the lhs of the eigenvalue equation (8), when the particles are sparse, to be zero in this special
case: ∑

j↔k

A...jk...(ω
−2αmψm + ω2βm+1ψm+1)z

x
j z

x
k = 0 (19)

where the sum is over the interchange j ↔ k of the indices and the short-hand notation
A...jk... ≡ A...pj pk... has been used. The way in which the momenta zj and zk enter in the
coefficients ψm and ψm+1 can be read from the structure of (18). Inserting (18) in equation (19)
and working out we see that only terms proportional to µ survive. The resulting requirement
for the scattering factor is

A...jk...

A...kj ...

= −1 + (ω4 + ω−4)z2
j + z2

j z
2
k

1 + (ω4 + ω−4)z2
k + z2

j z
2
k

. (20)

Let us make the following important observation: the transfer matrix acts on a generic state
shifting each particle one step to the right or to the left. Thus we can group particles in two
sets according to their position: odd and even particles. The two families do not mix. This
means that the scattering relation (20) holds for particles belonging to the same family.

In the following we elaborate our formalism in order to incorporate states containing grey
arrows pointing down. Start by noting that black arrows positioned on adjacent sites generate
a half-loop of grey arrows (see figure 3(b)). This observation leads to treat the grey arrow
down as bound state of two generic particles. Consider the states with N −2 ordinary particles
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(black arrows up) and 1 bound state (grey arrow down). We make the following natural ansatz
on the form of the wavefunction:

	m(x1, . . . , xm, . . . xN−1) ≡
∑

p

Ap1...pN
φm(p)

[
zx1
p1

. . . (zpm
zpm+1)

xm . . . zxN−1
pN

]
(21)

where the index m indicates that the bound state is preceded by m − 1 ordinary particles. The
bound state is located at position xm. Note that the wavefunctions (21) and (9) have essentially
the same structure apart from the coefficient φm which is still unknown at this stage. In
order to compute it we work out the eigenvalue equation (8) with the help of the ansatz (21)
and (9) for the particular case in which the initial state (rhs of equation (8)) contains two
adjacent particles. We see that if we require that∑

j↔k

A...jk...(ω
−2ψm + ω2ψm+1)zj =

∑
j↔k

A...jk...φm(η−2 + η2zj zk) (22)

then the generic list of possible evolutions (see rhs of equation (10)) automatically incorporates
the grey half-loop. The coefficient η accounts for the two possible orientations of the grey
half-loop. The next step is to study the evolution of the bound state. The analogue of
equation (10) for the bound state reads

�
∑
j↔k

A...jk...φm =
∑
j↔k

A...jk...

[
φm

(
zj zk

z1:Na
+

z1:Na

zj zk

)

+

(
η−2zk +

η2

zj

) m+N−1∑
n=m+1

zm+2:n

zn+1:m+N−1
(ω−2αnψn + ω2βn+1ψn+1)

]
. (23)

The bound state can move straight or form a half-loop as shown in figure 4. Now we have
to check the consistency of equation (23). For that eliminate φm in equation (23) using
relation (22). In order to eliminate �, plug in the value of �ψj given by the rhs of the
evolution equation (10). At the end we get an expression relating ψj for different values of j .
In the appendix we will show that such expression is consistent if we choose the same value
for the vertex weights ω = η (in terms of phases eb = eg) and demand that the scattering
amplitude is symmetric for the interchange of particles belonging to different families:

A...jk... = A...kj .... (24)

Note that the new scattering relation (24) is not in contradiction with the previous relation (20)
since the new one involves particles of different families.

We went further and studied the sector with two special particles. As amplitude ψjk ,
for two special particles, we take a linear combination of ψj(µ1)ψk(µ2) and ψj(µ2)ψk(µ1).
We call B12 and B21 the relative scattering amplitudes. The cancellation of unwanted terms
[13] that arise in the expression for the eigenvalue determines the ratio between B12 and B21.
Anticipating on the sector with more special particles we write the scattering relation in the
more general form

B...ij ...

B...j i...

= −µiµj + ω−4µj − ω4µi

µiµj + ω−4µi − ω4µj

. (25)

Now we have all the ingredients to derive the Bethe ansatz equations. In the spirit of coordinate
nested Bethe ansatz [14] we are ready to formulate an ansatz for the state with any number of
special particles:

�(x1, . . . , xN |r1, . . . , rm) =
∑
p,q

ApBq

N∏
j=1

z
xj

pj

m∏
i=1

ψi(p, µqi
, ri) (26)
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where the one special particle amplitude (18) is given by

ψi(p, µ, ri) = s
ω−2 + ω2z2

pri

(µ − ω2)z2
pri

− 1

ri−1∏
k=1

µ + ω−4 + z2
pk

(µ − ω4)z2
pk

− 1
. (27)

The wavefunction has to satisfy periodic boundary conditions. Suppose that the first particle
is an ordinary one (r1 �= 1):

�(x1, . . . , xN |r1, . . . , rm) = �(x2, . . . , xN , x1 + L|r1 − 1, . . . , rm − 1). (28)

From ansatz (26), it follows that a sufficient condition for the validity of (28) is that the
complex variable zp1 fulfils, for every permutation p, the relation

Ap1...pN

m∏
i=1

µqi
+ ω−4 + z2

p1(
µqi

− ω4
)
z2
p1

− 1
= Ap2...pNp1z

L
p1

. (29)

We make the additional assumption that the system has an even length L, this means that after
having imposed periodic boundary conditions to a generic particle the sublattice to which the
particle belongs does not change. We associate momenta zj (j = 1, . . . , nz) with the even
sublattice and yj (j = 1, . . . , ny) with the odd sublattice. By eliminating the amplitudes in
(29) using relations (20) and (24), we get the first two families of BA equations:

nµ∏
i=1

µi + ω−4 + z2
j

(µi − ω4)z2
j − 1

nz∏
k �=j

− 1 + (ω4 + ω−4)z2
j + z2

j z
2
k

1 + (ω4 + ω−4)z2
k + z2

j z
2
k

= zL
j (30)

nµ∏
i=1

µi + ω−4 + y2
j

(µi − ω4)y2
j − 1

ny∏
k �=j

− 1 + (ω4 + ω−4)y2
j + y2

j y
2
k

1 + (ω4 + ω−4)y2
k + y2

j y
2
k

= yL
j . (31)

Similarly, assuming that the first particle is a special one, we find an equation for the
variable µq1 :

Bq1...qm
= Bq2...qmq1

N∏
k=1

µq1 + ω−4 + z2
pk(

µq1 − ω4
)
z2
pk

− 1
. (32)

Making use of relation (25) we get the third family of BA equations:

a−2
nz∏

j=1

µl + ω−4 + z2
j

(µl − ω4)z2
j − 1

ny∏
k=1

µl + ω−4 + y2
k

(µl − ω4)y2
k − 1

nµ∏
m�=l

− µmµl + ω−4µl − ω4µm

µmµl + ω−4µm − ω4µl

= 1. (33)

The factor a−2 arises due to the fact that the special particle moves from the left to the right
side of the seam when periodic boundary conditions are imposed.

The eigenvalue expression that generalizes (16) has the form

� = (−1)nµ

a

nz∏
j=1

zj

ny∏
k=1

yk

nµ∏
m=1

(ω4 − µm) +
1

a

nz∏
j=1

1

zj

ny∏
k=1

1

yk

nµ∏
m=1

(
1

ω4
+ µm

) . (34)

5. The free energy

In order to find an exact solution of the model in the thermodynamic limit we need difference
kernels [13]. First simplify a bit notation (2) introducing the phase θ ≡ eb = eg and reminding
that a = exp(iπα). Then introduce a new set of variables uj , vj , wj related to zj , yj , µj by

z2
j = sin πθ

2 (1 + uj i)

sin πθ
2 (1 − uj i)

y2
j = sin πθ

2 (1 + vj i)

sin πθ
2 (1 − vj i)

µj = 2i sin πθ

1 − exp(πθwj )
(35)
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and define the function

Sc(x, θ) ≡ sin πθ
2 (c + xi)

sin πθ
2 (c − xi)

. (36)

The BAE in the new variables are

S1(uj , θ)L/2 = −
nw∏
i=1

S1(wi − uj , θ)

nu∏
k=1

−S2(uj − uk, θ) (37)

S1(vj , θ)L/2 = −
nw∏
i=1

S1(wi − vj , θ)

nv∏
k=1

−S2(vj − vk, θ) (38)

exp(−2iπα)

nu∏
j=1

S1(wl − uj , θ)

nv∏
k=1

S1(wl − vk, θ)

nw∏
m=1

−S2(wm − wl, θ) = −1. (39)

The eigenvalue is the sum of two terms:

� = (−1)nw

exp(iπα)

nu∏
j=1

S1(uj , θ)1/2
nv∏

k=1

S1(vk, θ)1/2
nw∏

m=1

sin πθ
2 (wmi − 2)

sin πθ
2 wmi

+ exp(−iπα)

nu∏
j=1

S1(uj , θ)−1/2
nv∏

k=1

S1(vk, θ)−1/2
nw∏

m=1

sin πθ
2 (wmi + 2)

sin πθ
2 wmi

 . (40)

Following the argument of [13] we see that the dominant eigenvalue lies in the sector labelled
by (nu = nv = nw = L/2). In the ground-state sector the number of black arrows up equals
the number of black arrows down. Also the number of grey arrows up and down are the same.
Note that the total number of black and grey arrows are allowed to fluctuate due to formation
of bound states. For α = 0 we get the largest eigenvalue when the roots are symmetrically
distributed on the real axis in such a way that no holes appear between two consecutive roots
(close packing of the roots). Switching on the twist α, the root distributions start to drift. The
seam breaks translational invariance, but because the location of the seam is immaterial, this
is not a physical effect. The pseudo-translational invariance of the ground state is expressed
as

nu∏
j=1

S1(uj , θ)1/2
nv∏

k=1

S1(vk, θ)1/2 = exp(iπα), (41)

Which allows for an eigenvalue expression with just one term:

� = A

nw∏
m=1

(
cos2 πθ + sin2 πθcoth2 πθwm

2

)1/2

. (42)

And the α dependence has been encapsulated in the factor A:

A ≡ 2 cos

(
2πα +

nw∑
m=1

arctan

(
tan πθ coth

(
πθwm

2

)))
. (43)

We can go further with the simplification taking the logarithm. For that purpose define the
function

φc(x, θ) ≡ i log Sc(x, θ). (44)
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And introduce the counting functions ZL(x, θ) as follows:

ZL,u(u, θ) ≡ −L

2
φ1(u, θ) +

nw∑
m=1

φ1(wm − u, θ) −
nu∑

k=1

φ2(uk − u, θ) (45)

ZL,v(v, θ) ≡ −L

2
φ1(v, θ) +

nw∑
m=1

φ1(wm − v, θ) −
nv∑

k=1

φ2(vk − v, θ) (46)

ZL,w(w, θ) ≡
nu∑

j=1

φ1(uj − w, θ) +
nv∑

k=1

φ1(vk − w, θ) −
nw∑

m=1

φ2(wm − w, θ) − 2πα. (47)

Note that the counting functions defined in this way have positive derivatives. The next
step is to define the root density function via the derivative of the counting functions in the
thermodynamic limit:

ρ(x) = 1

2π
lim

L→∞
d

dx

ZL(x)

L
. (48)

Numerically we find that approaching the thermodynamic limit the roots spread over the real
axis, from −∞ to +∞, thus the integral equations for the root density functions are

ρu(u, θ) = − 1

4π
φ′

1(u, θ) +
1

2π

∫ ∞

−∞
[φ′

1(x − u, θ)ρw(x, θ) − φ′
2(x − u, θ)ρu(x, θ)] dx (49)

ρv(v, θ) = − 1

4π
φ′

1(v, θ) +
1

2π

∫ ∞

−∞
[φ′

1(x − v, θ)ρw(x, θ) − φ′
2(x − v, θ)ρv(x, θ)] dx (50)

ρw(w, θ) = 1

2π

∫ ∞

−∞
[φ′

1(x − w, θ)(ρu(x, θ) + ρv(x, θ)) − φ′
2(x − w, θ)ρw(x, θ)] dx. (51)

The system can be solved using Fourier transform. The solutions for the root density functions
are

ρw(x) = 1

8
sech

(πx

4

)
ρu(x) = ρv(x) =

√
2

8
ch

(πx

4

)
sech

(πx

2

)
. (52)

It is remarkable to note that they do not depend on the parameter θ . There is still θ dependence
in the expression for the largest eigenvalue (42). The free energy in the thermodynamic limit
has the following integral representation:

f∞(θ) = 1

16

∫ ∞

−∞
log

[
cos2 πθ + sin2 πθ coth2 πθx

2

]
sech

(πx

4

)
dx 0 < θ � 1. (53)

Note that the α dependence (43) drops out in the thermodynamic limit. In the interval
1/2 < θ = eb = eg � 1 according to relations (2) the fugacity of the loops becomes
negative so that the partition sum (1) will also contain configurations with a negative weight.
We checked numerically with 15 digits of accuracy that at θ = 1, the largest eigenvalue of
the transfer matrix is 2 so that the free energy vanishes. Applying Parseval formula we can
write the free energy as a Laplace transform:

f∞(θ) = −
∫ ∞

0

e−p sech(2pθ) sinh2(pθ)

p sinh p
dp − 1

2
log 2 − 3

2
log π + 2 log (1/4). (54)

For particular values of θ the integral can be solved [13].
Two mutually excluding Hamiltonian walks [1]:

f∞(1/2) = 1
2 log 2. (55)

The Ice model [13]

f∞(1/3) = 3
2 log 4

3 . (56)
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Four-colouring on the square lattice [1, 6]:

f∞(θ → 0) = − 1
2 log 2 − 3

2 log π + 2 log (1/4). (57)

Note that in this last particular limit expression (36) becomes rational. These BA equations
were derived for the first time in [12] and look very much like those derived in [29] for mixed
SU(N) vertex model for the case N = 4. The BA equations for SU(N) vertex models were
derived in [28] starting from a Yang–Baxter structure in which the R-matrix and the Lax
operator coincide. Martins [29] using the Braid-monoid algebra constructed a more general
monodromy matrix mixing two distinct Lax operators.

An exact solution can also be found in the non-critical region which corresponds to
fugacity n > 2. Since the fugacity is defined by n = 2 cos πθ , this region corresponds to
imaginary values for the parameter θ . For convenience we assume θ real so that the fugacity
is now given by n = 2 cosh πθ , and redefine the function (36) and (44) by

φc(x, θ) ≡ i log

(
sinh πθ

2 (c + xi)

sinh πθ
2 (c − xi)

)
. (58)

Now in the thermodynamic limit, the roots corresponding to the largest eigenvalue are
symmetrically distributed in the finite interval [−1/θ, 1/θ ]. This time the integral equation
can be solved by Fourier series. The Fourier components are

ρ̂u(m, θ) = ρ̂v(m, θ) = 1
2 cosh(mπθ) sech(2mπθ) ρ̂w(m, θ) = 1

2 sech(2mπθ). (59)

The root density functions

ρw(x, θ) = θ

2

+∞∑
m=−∞

ρ̂w(m, θ) exp(imπθx) ρu,v(x, θ) = θ

2

+∞∑
m=−∞

ρ̂u,v(m, θ) exp(imπθx).

(60)

These can also be written in terms of Jacobi elliptic functions:

ρw(x, θ) = θK(k)

2π
dn[xK(k)θ, k] (61)

ρu,v(x, θ) = θK(k)

4π
(dn[xK(k)θ + iK(k)θ, k] + dn[xK(k)θ − iK(k)θ, k]) (62)

where the modulus k and the complete elliptic integral of the first kind K(k) are related to the
phase θ by

K(k) ≡
∫ π/2

0
[1 − k2 sin2 φ]−1/2 dφ

K(
√

1 − k2)

K(k)
= 2θ. (63)

The free energy

f∞(θ) = πθ

2
+

∞∑
m=1

e−mπθ sinh(mπθ)

m cosh(2mπθ)
= −1

4
log q +

∞∑
m=1

1

m

1 − qm

qm + q−m
(64)

where q ≡ exp(−2πθ). Taylor expanding the summand around q = 0 and summing with
respect to m we get the following product expansion for the partition function:

lim
L,M→∞

Z1/LM = ef∞(θ) = q−1/4
∞∏

p=1

(1 − q2(2p−1))(1 − q4p−1)

(1 − q4p−3)(1 − q4p)
. (65)
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For q → 1 we get the partition function for the four-colouring model:

ef∞(0) =
∞∏

p=1

(2p − 1)(4p − 1)

2p(4p − 3)
= 2(1/4)√

2π3/2
(66)

in agreement with the expression (57).
We have all the ingredients to discuss the singular behaviour of the free energy. We can

read the non-analyticity of the partition function from expression (65). It appears that (65)
has a solid wall of singularities on the unit circle [14]. Following [36, 37] we calculate the
analytic continuation of the critical free energy (54) into the non-critical region so that we can
extract the singularity of the free energy near the critical point n = 2. We find that near n = 2
the free energy has an essential singularity:

fsing ∝ exp

(
− π2

4|n − 2|1/2

)
. (67)

This means that at the critical point n = 2 the model undergoes an infinite-order phase
transition of the Kosterlitz–Thouless type. The same type of transition has been found in
[27] for a loop model on the hexagonal lattice. Even if the free energy exhibits an essential
singularity at n = 2, the right and left derivatives, of generic order, approach the same values,
in the limit n → 2±.

For the first derivative we get

df∞(n)

dn

∣∣∣∣
n→2±

= 1

24
. (68)

It has been shown that the first-order derivative of the free energy with respect to the fugacity
is related to the average loop length L [2]. We found L = 12, which is three times the minimal
loop length allowed by the square lattice, in agreement with the conjecture made in [2].

6. Conclusions

We have studied the bulk properties of the FPL2 model in the case in which the two loop
fugacities are the same, both in the critical (n � 2) and non-critical (n > 2) regions. The
model undergoes an infinite-order phase transition, of the Kosterlitz–Thouless type, at the
critical point n = 2. The ansatz we make on the wavefunction works only when the vertex
weights are the same ω = η. This is because the amplitude that describes the scattering of
particles belonging to different (odd and even) families, does not factorize into two particles
scattering amplitudes when ω �= η. The details are in the appendix. It will be interesting to
find the Yang–Baxter relation on this solvable line and hopefully extend it to the whole phase
diagram. Using the nonlinear integral equation method we found the exact value of the central
charge and of some scaling dimensions, on the solvable line. We will publish the results in a
forthcoming paper.

Appendix

Replacing φm in equation (23) by equation (22) the consistency requirement becomes∑
j↔k

A...jk...

[ (
zj zk

z1:Na
+

z1:Na

zj zk

− �

)
(ω−2ψm + ω2ψm+1)zj + (η−2 + η2zj zk)

×
(

η−2zk +
η2

zj

) m+N−1∑
n=m+1

zm+2:n

zn+1:m+N−1
(ω−2αnψn + ω2βn+1ψn+1)

]
= 0. (A.1)
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In order to eliminate �, plug in the value of �ψm and �ψm+1 given by the rhs of
equation (10):∑
j↔k

A...jk...

[ (
zj zk

z1:Na
+

z1:Na

zj zk

+ z1:Nω4a +
1

z1:Nω4a

)
(ω−2ψm + ω2ψm+1)zj

− zj

(
z−1
j ω−4 + zj

) m+N−1∑
n=m

(ω−2αnψn + ω2βn+1ψn+1)
zm+1:n

zn+1:N+m−1

− zj

(
z−1
k + zkω

4
) m+N∑

n=m+1

(ω−2αnψn + ω2βn+1ψn+1)
zm+2:n

zn+1:N+m

+ (η−2 + η2zj zk)

×
(

η−2zk +
η2

zj

) m+N−1∑
n=m+1

(ω−2αnψn + ω2βn+1ψn+1)
zm+2:n

zn+1:m+N−1

]
= 0. (A.2)

We look for a sufficient condition on the scattering amplitude A...jk... which ensures the
validity of the equality (A.2). We start by considering the terms, in the sums, that involve ψj

for j �= m,m + 1 and require their single contribution to be zero. Working out we get the
following condition:∑
j↔k

A...jk...

[
1

zj

− 1

zk

+ zj z
2
k − z2

j zk +

(
η4 +

1

η4
− ω4 − 1

ω4

)
zk

]
= 0. (A.3)

When η = ω the expression in parenthesis is antisymmetric and the sum vanishes if the
scattering amplitude is symmetric A...jk... = A...kj .... Sorting out the terms ψm and ψm+1 in
(A.2) we got a more complicate expression which also goes to zero on the previous conditions,
but not for the more general solution of (A.3).
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